ENHANCED ADIC FORMALISM AND PERVERSE t-STRUCTURES FOR HIGHER ARTIN STACKS

نویسندگان

  • YIFENG LIU
  • WEIZHE ZHENG
چکیده

In this sequel of [17, 18], we develop an adic formalism for étale cohomology of Artin stacks and prove several desired properties including the base change theorem. In addition, we define perverse t-structures on Artin stacks for general perversity, extending Gabber’s work on schemes. Our results generalize results of Laszlo and Olsson on adic formalism and middle perversity. We continue to work in the world of ∞-categories in the sense of Lurie, by enhancing all the derived categories, functors, and natural transformations to the level of ∞-categories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ENHANCED ADIC FORMALISM, BIDUALITY, AND PERVERSE t-STRUCTURES FOR HIGHER ARTIN STACKS

In this sequel of [17,18], we develop the adic formalism and extend previous results to adic complexes. In addition, we introduce perverse t-structures on Artin stacks for general perversity, based on Gabber’s work on schemes. Our results generalize results of Laszlo and Olsson on adic formalism and middle perversity. We continue to work in the world of ∞-categories in the sense of Lurie, by en...

متن کامل

Beilinson’s construction of nearby cycles and gluing

We fix a field k. All the schemes we will consider will be separated and of finite type over k. If X is a scheme, we write D c(X) for the category of bounded constructible `-adic complexes on X or, if k = C, for bounded constructible complexes on X(C). (The formalism will work in both cases.) In both cases, we’ll write Perv(X) for the heart of the selfdual perverse tstructure on D c(X). When we...

متن کامل

Mixed Artin–Tate motives over number rings

This paper studies Artin–Tate motives over bases S ⊂ Spec OF , for a number field F . As a subcategory of motives over S, the triangulated category of Artin–TatemotivesDATM(S) is generated by motives φ∗1(n), where φ is any finite map. After establishing the stability of these subcategories under pullback and pushforward along open and closed immersions, a motivic t-structure is constructed. Exa...

متن کامل

Mixed Motives and Geometric Representation Theory in Equal Characteristic

Let k be a field of characteristic p. We introduce a formalism of mixed sheaves with coefficients in k and apply it in representation theory. We construct a system of k-linear triangulated category of motives on schemes over Fp, which has a six functor formalism and computes higher Chow groups. Indeed, it behaves similarly to other categories of mixed sheaves that one is used to. We attempt to ...

متن کامل

Modular perverse sheaves on flag varieties II: Koszul duality and formality

Building on the theory of parity sheaves due to Juteau–Mautner– Williamson, we develop a formalism of “mixed modular perverse sheaves” for varieties equipped with a stratification by affine spaces. We then give two applications: (1) a “Koszul-type” derived equivalence relating a given flag variety to the Langlands dual flag variety, and (2) a formality theorem for the modular derived category o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014